Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Na Zhu, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{O})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.079$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diaquatetramethanolcobalt(II) sulfate

In the title compound, $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{SO}_{4}$, the $\mathrm{Co}^{\text {II }}$ atom and S atom lie on special positions on a twofold rotation axis. The $\mathrm{Co}^{\mathrm{II}}$ ion is six-coordinated by four O atoms of methanol molecules and two water molecules in a distorted octahedral geometry. The cations and anions are linked by hydrogen bonds into a three-dimensional supramolecular network.

Comment

The study of metal-oxime complexes is currently subject to extensive research owing to their increasingly recognized biochemical activities and unusual electronic properties (Chaudhuri, 2003). Terephthalaldoxime is a potential multidentate bridging agent formed by condensing terephthalaldehyde with hydroxylamine. However, there are no reports of any metal derivative. Recently, we used it as ligand to react with $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in a mixed solution of $\mathrm{MeOH}(10 \mathrm{ml})$ and DMF (2 ml), but we obtained a new cobalt complex by accident, namely, $\left[\mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{SO}_{4}$, (I), whose crystal structure is reported here.

The structure of (I) comprises a tetramethanolcobalt(II) cation and a sulfate anion (Fig. 1). The $\mathrm{Co}^{\mathrm{II}}$ atom and S atom lie on special positions on a twofold rotation axis. The Co center has a slightly distorted octahedral coordination geometry defined by four O atoms from methanol molecules and two water molecules. Atoms $\mathrm{O} 1, \mathrm{O} 1^{\mathrm{i}}, \mathrm{O} 1 W$ and $\mathrm{O} 1 W^{\mathrm{i}}$ form the equatorial plane of the octahedron, with an average atomic displacement of 0.04 (4) \AA, while the $\mathrm{Co}^{\mathrm{II}}$ ion is coplanar with the equatorial plane. The two hydroxyl atoms, O 2 and $\mathrm{O} 2^{\mathrm{i}}$, are located in the axial positions, with an $\mathrm{O}-$ $\mathrm{Co}-\mathrm{O}$ angle of $178.79(8)^{\circ}$ [symmetry code: (i) $x-y+\frac{1}{3}$, $\left.-y+\frac{2}{3},-z+\frac{1}{6}\right]$.

The ions are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecules, the methanol molecules and the O atoms

Figure 1
The structure of the cation and anion of (I), showing 30% probability displacement ellipsoids. The dashed line indicates an intermolecular hydrogen bond. [Symmetry code: (i) $x-y+\frac{1}{3},-y+\frac{2}{3},-z+\frac{1}{6}$.]

Figure 2
The three-dimensional supramolecular network of (I), with hydrogen bonds indicated by dashed lines.
of the $\mathrm{SO}_{4}{ }^{2-}$ into a three-dimensional hydrogen-bonded framework. These hydrogen bonds appear to complement the Coulombic interaction and help to further stabilize the structure (Fig. 2 and Table 2).

Experimental

The title complex was prepared by the addition of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.263 \mathrm{~g}, 1 \mathrm{mmol})$ and terephthalaldoxime $(0.164 \mathrm{~g}, 1 \mathrm{mmol})$ to a mixed solvent of $\mathrm{MeOH}(10 \mathrm{ml})$ and DMF (2 ml). The mixture was stirred for 0.5 h at room temperature and then filtered. Orange crystals separated from the filtered solution after several days. Analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{20} \mathrm{CoO}_{10} \mathrm{~S}$: C $15.05, \mathrm{H} 6.32 \%$; found: C 15.09, H 6.34\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{SO}_{4}$
$M_{r}=319.19$
Trigonal, $R \overline{3} c$
$a=15.656$ (2) \AA
$c=29.144$ (6) \AA
$V=6186.8(17) \AA^{3}$
$Z=18$

$$
D_{x}=1.542 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
$\mu=1.43 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, orange
$0.32 \times 0.25 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min }=0.657, T_{\max }=0.783$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.079$
$S=1.08$
1583 reflections
88 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0486 P)^{2}\right. \\
& +4.4049 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.36 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Co1-O1	$2.0940(12)$	$\mathrm{Co} 1-\mathrm{O} 1 W$	$2.0584(13)$
$\mathrm{Co} 1-\mathrm{O} 2$	$2.0703(15)$		
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	$88.16(7)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 1$	$91.42(5)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	$87.62(6)$	$\mathrm{O} 1 W^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	$177.48(6)$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{C} 1-\mathrm{O} 1$	$93.25(6)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 2$	$89.21(7)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 2$	$178.79(8)$	$\mathrm{O} 1 W^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 2$	$89.93(6)$
Symmetry code: (i) $x-y+\frac{1}{3},-y+\frac{2}{3},-z+\frac{1}{6}$			

Symmetry code: (i) $x-y+\frac{1}{3},-y+\frac{2}{3},-z+\frac{1}{6}$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \cdot$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 4^{\text {ii }}$	0.839 (13)	1.847 (9)	2.6839 (18)	176 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 3$	0.84 (3)	1.89 (3)	2.7117 (17)	170 (3)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {ii }}$	0.84 (3)	1.85 (3)	2.6770 (16)	168 (2)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {iii }}$	0.83 (3)	1.83 (3)	2.629 (2)	174 (3)

Symmetry codes: (ii) $y,-x+y,-z$; (iii) $-x+y,-x, z$.

The H atoms on carbon were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, in the riding-model approximation. O-bound H atoms were located in difference Fourier

metal-organic papers

maps and refined with an $\mathrm{O}-\mathrm{H}$ distance restraint of 0.85 (1) \AA and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund of

Remarkable Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-190.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

